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Inductive inference allows humans to make powerful

generalizations from sparse data when learning about

word meanings, unobserved properties, causal

relationships, and many other aspects of the world.

Traditional accounts of induction emphasize either the

power of statistical learning, or the importance of

strong constraints from structured domain knowledge,

intuitive theories or schemas. We argue that both

components are necessary to explain the nature, use

and acquisition of human knowledge, and we introduce

a theory-based Bayesian framework for modeling

inductive learning and reasoning as statistical infer-

ences over structured knowledge representations.
Introduction

Human cognition rests on a unique talent for extracting
generalizable knowledge from a few specific examples.
Consider how a child might first grasp the meaning of a
common word, such as ‘horse’. Given several examples of
horses labeled prominently by her parents, she is likely to
make an inductive leap that goes far beyond the data
observed. She could now judge whether any new entity is a
horse or not, and she would be mostly correct, except
for the occasional donkey, deer or camel. The ability to
generalize from sparse data is crucial not only in learning
word meanings, but in learning about the properties of
objects, cause–effect relations, social rules, and many
other domains of knowledge.

This article describes recent research that seeks to
understand human inductive learning and reasoning in
computational terms (see also Conceptual Foundations
Editorial by Chater, Tenenbaum and Yuille in this issue).
The goal is to build broadly applicable, quantitatively
predictive models that approximate optimal inference
in natural environments, and thereby explain why human
generalization works the way it does and how it
can succeed given such sparse data [1,2]. Our focus is
on computational-level theories [3], characterizing
the functional capacities of human inference rather
than specific psychological processes that implement
those functions.

Most previous accounts of inductive generalization
represent one of two approaches. The first focuses
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on relatively domain-general, knowledge-independent
statistical mechanisms of inference, based on similarity,
association, correlation or other statistical metrics [1,4–
13]. This approach has led to successful mathematical
models of human generalization in laboratory tasks, but
fails to account for many important phenomena of
learning and reasoning in complex, real-world domains,
such as intuitive biology, intuitive physics or intuitive
psychology. The second approach aims to capture more of
the richness of human inference, by appealing to
sophisticated domain-specific knowledge representations,
or intuitive theories [14–20]. An intuitive theory may be
thought of as a system of related concepts, together with a
set of causal laws, structural constraints, or other
explanatory principles, that guide inductive inference in
a particular domain. However, theory-based approaches to
induction have been notoriously difficult to formalize,
particularly in terms that make quantitative predictions
about behavior or can be understood in terms of rational
statistical inference.

We will argue for an alternative approach, where
structured knowledge and statistical inference cooperate
rather than compete, allowing us to build on the insights
of both traditions. We cast induction as a form of Bayesian
statistical inference over structured probabilistic models
of the world. These models can be seen as probabilistic
versions of intuitive theories [14,18,20] or schemas
[21,22], capturing the knowledge about a domain that
enables inductive generalization from sparse data. This
approach has only become possible in recent years, as
advances in artificial intelligence [23] and statistics [24]
have provided essential tools for formalizing intuitive
theories and theory-based statistical inferences. The
influence is bidirectional, as these Bayesian cognitive
models have led to new machine-learning algorithms with
more powerful and more human-like capacities [25,26].
Theory-based Bayesian models

Theory-based Bayesian models of induction focus on three
important questions: what is the content of probabilistic
theories, how are they used to support rapid learning, and
how can they themselves be learned? The learner
evaluates hypotheses h about some aspect of the world –
the meaning of a word, the extension of a property or
category, or the presence of a hidden cause – given
observed data x and subject to the constraints of a
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Figure 1. A hierarchical Bayesian framework for theory-based induction. The

learner observes data about the world (e.g. examples of objects that a word refers

to) and must predict other unobserved data (e.g. which other objects the word can

refer to). The learner’s intuitive theory generates hypotheses that can explain the

observed data and that support the desired predictions. The theory represents

knowledge on at least two levels of abstraction: a structured probabilistic model

generates expectations about the probability of possible data sets, while more

abstract domain principles generate the space of possible structures that the

learner may consider. Each level generates the hypotheses and probability

distributions that support learning at the level below. Priors for abstract domain

principles can come from multiple sources, including higher-level domain

knowledge or domain-general conceptual resources.
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background theoryT. Hypotheses are scored by computing
posterior probabilities via Bayes’ rule:

Pðhjx;TÞZ
Pðxjh;TÞPðhjTÞ

P
h02HT

Pðxjh0;TÞPðh0jTÞ
(1)

The likelihood P(xjh,T) measures how well each
hypothesis predicts the data, and the prior probability
P(hjT) expresses the plausibility of the hypothesis given
the learner’s background knowledge. Posterior probabil-
ities P(hjx,T) are proportional to the product of these two
terms, representing the learner’s degree of belief in each
hypothesis given both the constraints of the background
theory T and the observed data x (see the Technical
Introduction to this special issue by Griffiths and Yuille for
further background: Supplementary material online)
Adopting this Bayesian framework is just the starting
point for our cognitive models. The challenge comes in
specifying hypothesis spaces and probability distributions
that support Bayesian inference for a given task and
domain. In theory-based Bayesian models, the domain
theory plays this crucial role.

More formally, the domain theory T generates a space
HT of candidate hypotheses, such as all possible meanings
for a word, along with the priors P(hjT) and likelihoods
P(xjh,T). Prior probabilities and likelihoods are thus not
simply statistical records of the learner’s previous
observations, as in some Bayesian analyses of perception
and motor control [27,28], or previous Bayesian analyses
of inductive reasoning [29]. Neither are they assumed to
share a single universal structure across all domains, as in
Shepard’s pioneering Bayesian analysis of generalization
[30]. Rather, they are products of abstract systems of
knowledge that go substantially beyond the learner’s
direct experience of the world, and can take qualitatively
different forms in different domains.

We will distinguish at least two different levels of
knowledge in a theory (Figure 1). Although intuitive
theories may well be much richer than this picture
suggests, we focus on the minimal aspects of theories
needed to support inductive generalization. The base level
of a theory is a structured probabilistic model that defines
a probability distribution over possible observables –
entities, properties, variables, events. This model is
typically built on some kind of graph structure capturing
relations between observables, such as a taxonomic
hierarchy or a causal network, together with a set of
numerical parameters. The graph structure determines
qualitative aspects of the probabilistic model; the numeri-
cal parameters determine more fine-grained quantitative
details. At a higher level of knowledge are abstract
principles that generate the class of structured models a
learner may consider, such as the specification that a
given domain is organized taxonomically or causally.
Inference at all levels of this theory hierarchy (Figure 1)
– using theories to infer unobserved aspects of the data,
learning structured models given the abstract domain
principles of a theory, and learning the abstract domain
principles themselves – can be carried out in a unified and
tractable way with hierarchical Bayesian models [24].
www.sciencedirect.com
The following sections describe theory-based Bayesian
models for several important inductive tasks, contrasting
them with alternative approaches emphasizing either
statistical learning or structured knowledge alone. We
begin with the task of learning words or category labels,
and focus on the lowest level of inference: theory-based
generalization. Then we illustrate the full hierarchical
approach in two other domains, property induction and
causal inference.
Learning names for things

Behavioral studies of human inductive generalization
arguably began with the study of category learning [31].
The basic experimental task presents learners with a set
of objects or visual stimuli, and a verbal label (e.g. ‘blicket’)
that applies to a subset of the objects. Learners observe
several examples of blickets, and perhaps negative
examples (non-blickets), and must then infer which
other objects the label applies to.

These artificial category-learning tasks abstract the
essence of the problem children face in learning words for
kinds of things, and formal models of category-learning
and word-learning have developed in parallel. They
typically rely on bottom-up general-purpose statistical
mechanisms, either explicitly probabilistic [1,32] or
framed in terms of similarity or association [12,13,8].
These models assume relatively simple notions of
categories and how labels relate to categories: for instance
[32], each object belongs to a single category, and each
label picks out a unique category, so each object receives
exactly one label. However, people’s representations of
categories and word meanings are considerably more
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structured, reflecting their intuitive domain theories. The
need for a more theory-based approach has often been
pointed out [18,14,33,16,20], but rarely pursued by
formal modelers.

Insights from both these traditions come together in a
Bayesian framework [34–36]. In terms of Equation 1,
hypotheses about the meaning of a novel label refer to
subsets of objects – candidate extensions for a word’s
meaning or a category to be labeled. Abstract knowledge
about category structure, word usage, and word-category
mappings generates the priors and likelihoods for these
hypotheses. Tenenbaum and Xu [35,36] focus on learning
names for object-kind concepts, which are typically
organized into a tree-structured taxonomy with labels at
various levels [37,16]. Accordingly, the hypothesis space of
candidate word meanings consists of all subtrees in a tree-
structured taxonomy of objects (in Figure 2a, subtrees
correspond to basset hounds, dogs, animals, etc.). Other
logically possible subsets of objects not corresponding to
subtrees are effectively assigned zero (or very low) prior
probability. The prior can be further restricted to favor
mappings of words onto basic-level categories [37], or to
disfavor mapping two words onto exactly the same concept
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[38]. The likelihood embodies a pragmatic assumption that
words will be used by a competent and cooperative speaker
[17], and that the objects labeled are a fair random sample
from the set of objects that the word applies to.

These priors and likelihoods combine to explain how
children generalize object labels from one or several
examples. Figure 2b shows that generalization follows a
gradient according to taxonomic distance, which sharpens
up given multiple examples to focus on the most specific
consistent taxonomic category: e.g. basset hounds if the
examples are all basset hounds, or dogs if the examples
are all dogs but different kinds of dogs. Generalization
along taxonomic contours derives from the tree-structured
prior. In principle, a prior could be defined over other
representational structures, such as a Euclidean space
recovered from similarity judgments, as is common in
similarity-based models [12]. But to date, tree-structured
priors have been the basis for the most accurate Bayesian
models of word-learning, consistent with a proposed
taxonomic bias in children’s word learning [16]. The
sharpening of generalization with more examples derives
from the likelihood: a single example is not highly
diagnostic about the scope of the word’s extension,
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from examples of object–label pairs. Objects are given unfamiliar labels to illustrate

the hypothesis space of word meanings: each node in the tree (red dot) is a possible

e, and generate the priors and likelihoods necessary to evaluate these hypotheses

tterns of generalization (preliminary findings from [36]). For both children and the

les, and this gradient becomes sharper as more examples are observed. See text for
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but observing several examples drawn at random, it would
be a highly suspicious coincidence for all examples to fall
within a given taxonomic category (e.g. basset hounds) if
the word in fact had a much broader extension (e.g. dogs),
so the most specific consistent hypothesis is
strongly preferred.

The tendency for smaller, more specific hypotheses to
be increasingly preferred over larger, more general
hypotheses as more examples are observed is a general
principle of Bayesian learning when randomly sampled
examples are assumed. Tenenbaum and Griffiths [34]
referred to this as the ‘size principle’ and showed how it
could potentially explain a wide range of phenomena
in category learning, generalization, and similarity
judgment, which were not previously unified under a
single rational-inference account. The random-sampling
assumption is not always valid, of course, and the size
principle may be accordingly defeasible. Xu and Tenen-
baum (unpublished data) have found its effects are
reduced or eliminated when word learners (children or
adults) are given examples that are clearly not drawn as
independent random samples. This Bayesian framework
has been extended to learning other aspects of linguistic
meaning, using differently structured hypothesis spaces
appropriate for learning verb frames [39], adjectives [40],
or anaphora resolution [41]. There are also clear connec-
tions to Bayesian syntactic acquisition (see Chater and
Manning, this issue [42]).

These Bayesian analyses have focused on learning at
the bottom level of Figure 1 – learning about which words
can refer to which entities, situations or properties.
Future work should explore learning the higher-level
knowledge that supports these inferences – for instance,
how people learn the principles that structure word-
category mappings, or the relevant taxonomic tree
of categories [43,16,15]. The following section describes
a closely related learning task where Bayesian inferences
at higher levels of Figure 1 have been analyzed
more systematically.

Reasoning about hidden properties

Many kinds of predicates may be true of a given entity.
Some of these predicates correspond to category labels (is
a horse, is a fish) but many correspond to properties, such
as is brown, has a spleen, or can fly. Property induction has
been the subject of numerous behavioral experiments and
formal models. In a typical task, learners find out that one
or more categories have a novel property, and must decide
how to extend the property to other categories in the
domain. For instance, subjects might be told that gorillas
and lions carry a certain gene, and asked to judge how
likely it is that monkeys also carry this gene [4,5].

Theory-based property induction

The most systematic studies of property induction have
used biological species and blank properties: properties
like has the T4 gene that are unfamiliar but recognizably
biological. A tree-based Bayesian model [44] similar to the
Tenenbaum and Xu [35] word-learning model accounts
well for judgments about blank biological properties.
The model assumes that species are organized into a
www.sciencedirect.com
tree-structured taxonomy [15], and that properties are
generated by a mutation process over this tree (Figure 3a,
left). The mutation process generates a prior over
candidate extensions of predicates that is more flexible
than traditional symbolic semantic hierarchies (or the
word-learning prior in [35]): properties that pick out a
single subtree of the taxonomy are favored, but poly-
phyletic properties (those that arise independently in two
or more subtrees) are also allowed (Figure 3b). This model
approximates optimal inference for biological species and
their properties, which are in fact generated by a
stochastic branching process – the process of evolution.
Both the tree structure and somemutation-like process for
generating property distributions seem to be important;
Bayesian models using a range of other priors have
consistently correlated less well with people’s judgments
[45,44,46].

Previous computational models for blank-property
induction have used more generic knowledge represen-
tations, such as pairwise similarities [5] or collections of
features [6]. In comparison with these models, theory-
based approaches have clear advantages in explaining
inferences about other kinds of predicates, where more
specialized prior knowledge is involved. Qualitatively
different patterns of generalization have been found for
anatomical properties, behavioral properties and disease
properties [29,47,48]. To cite one classic example, given
that Poodles can bite through wire, it seems likely that
German Shepherds can bite through wire, but knowing
that Dobermans can bite through wire provides less
support for the same conclusion about German Shepherds
[48]. These inferences cannot rely on similarity, because
German Shepherds are more similar to Dobermans than
to Poodles. Other inferences appear to rely on asymmetric
causal relations: for example, a disease carried by salmon
is more likely to be found in grizzly bears than vice
versa [47].

Bayesian models can account for these different
patterns of generalization by using different priors [29].
In terms of Figure 1, inferences about different kinds of
observable predicates are based on different kinds of
structured probabilistic models, which are in turn
governed by different abstract domain principles. Several
examples are shown in Figure 3a. In each case, the
taxonomic tree structure and the mutation process of the
default model are replaced by a differently structured
graph and a different kind of stochastic process over that
structure. For inferences about disease predicates (e.g.
carries Leptospirosis), the prior is generated by a noisy
transmission process over a directed food-web network
(Figure 3a, middle). This prior captures the asymmetry of
generalizations in this domain – that a prey species is
more likely to share a disease with its predators than vice
versa – and accurately predicts people’s inductive judg-
ments about disease predicates (Figure 3c). A predicate
like can bite through wire or weighs more than an anvil
corresponds to an unknown threshold along some known
dimension (e.g. strength or size). A linearly ordered graph
can represent the relevant dimension, and judgments
about threshold predicates [48,7] can be modeled
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Figure 3. Theory-based Bayesian property induction. (a) Three models for property induction: a taxonomic model (left), a food-web model (centre) and a dimensional-

threshold model (right). Each model assumes that properties are generated by a different probabilistic process over a different kind of graph structure, and each model is

appropriate for a different kind of property. In the taxonomic model, properties are generated by a mutation process: there is a small probability of a property appearing at any

point along any branch of the tree. In the food-web model, properties are generated by a causal transmission process: there is a small probability of a property arising

spontaneously in any species, and a high probability of transmitting that property from the species to each of its predators. In the dimensional-threshold model, properties

are generated by a random-drift process biased such that species towards one end of the dimension are increasingly likely to have the novel property. The ‘Data’ level of the

figure shows properties with high prior probability under each of these models: e.g. the dimensional-threshold model favors hypotheses that include all species beyond

some point in the linear order. (b) Three possible outcomes if a property is generated by the taxonomic model, shown in order of decreasing prior probability: properties are

most likely if they can be explained by a small number of mutations, and if those mutations occur on long branches. (c) The importance of domain theories in Bayesian

models of property induction is illustrated by a double dissociation in model predictions for two different kinds of properties (preliminary findings from [70]). Participants

learned both a taxonomy and a food web over a set of species and were asked to make inductive judgments about either genetic or disease properties. The Bayesian

taxonomic model correlated strongly with judgments for genetic properties but not disease properties, and vice versa for the Bayesian food-web model.
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assuming a prior generated by a random drift process over
that graph (Figure 3a, right).
Learning theories to support property induction

If differently structured theories are necessary to account
for inferences about different kinds of predicates, it
becomes even more pressing to explain how these theories
could be acquired. Bayesian approaches can address this
question at all levels of the theory hierarchy in Figure 1,
and we illustrate by showing how the taxonomic theory
might be acquired (Figure 4). First, consider the problem
of learning the tree structure given raw observable data,
in the form of a large collection of species-property pairs
(e.g. lions have sharp teeth, chimps have hair, etc.). There
are many different ways to organize species into a tree
www.sciencedirect.com
(Figure 4a), but we can search for the tree that maximizes
the likelihood P(DatajStructure) for the dataset of
observed properties [49,46]. Intuitively, the best choice
allows features to vary smoothly over the tree: for
example, because gorillas and monkeys share many
properties, these species should be located nearby in
the tree.

This approach to learning a structured probabilistic
model relies crucially on abstract knowledge at the highest
level in Figure 1: a ‘taxonomic principle’ specifying that
living kinds should be represented by a tree structure.
Could such anabstract domain principle itself by acquired?
Abstract knowledge of this sort is often thought to be innate
[15,50], perhapsbecause it seemsso remote fromthedataof
experience. Given an appropriate hypothesis space,
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Figure 4. Learning a theory for how biological properties are distributed over species. (a) Given abstract domain knowledge that species should be organized in a taxonomic

tree, with properties varying smoothly over that tree, a Bayesian learner can infer the tree structure that best explains a set of observed properties. Two ways to organize

animal species into a taxonomy are shown. The preferred structure will be the tree over which observed properties vary most smoothly. (b) Animal species may be organized

according to various different structural principles, such as the three shown here. Bayesian inference in the hierarchical framework of Figure 1 can select the organizing

principles best supported by a set of observed properties.
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however, Bayesian inference can account for knowledge
acquisition at any level of abstraction. Suppose that the
learner has access to a repertoire of different structural
forms that includes taxonomic trees as well as other basic
alternatives, such as one-dimensional orders and disjoint
clusters (Figure 4b). Choosing the best form involves a
trade-off between complexity and fit to the data, which can
be formalized in terms of the hierarchical Bayesian
framework of Figure 1. Kemp et al. [46] showed that
under this trade-off, the judged properties of biological
species are better accounted for by trees than either linear
orders or clusters.

In summary, the hierarchical Bayesian framework of
Figure 1 supports a unified learning model that takes as
input data a collection of species-property pairs, and
subsequently discovers the taxonomic principle, discovers
the best tree structure for the species in the dataset, and
makes predictions about how to generalize new, sparsely
observed properties. It thus explains how the theory in
Figure 3a (left) might be discovered from raw data, and
likewise could explain the origins of hypothesis spaces and
inductive biases for word learning in young children
discussed in the previous section. Theories can also be
acquired through other processes, such as explicit
instruction; for example, food-web relations are typically
learned that way. Unlike similarity-based accounts of
property induction, a hierarchical Bayesian approach
naturally accommodates explicit instructions at any
level of abstraction, as children typically receive from
parents or in school: for example, dolphins breath air (at
the level of observable data), dolphins are mammals (at
the level of structure), and living things can be organized
into a tree (at the level of abstract principles). This
approach could explain how hearing a single statement
about domain structure (e.g. dolphins are mammals)
might lead to dramatic changes in inferences about
unobserved properties.
Causal learning and reasoning

The role of intuitive theories in learning and reasoning
has beenmost prominently studied in the context of causal
www.sciencedirect.com
cognition [33,18,51,19]. For many authors, causality is
central to the notion of a theory. Carey, for instance,
suggests that a theory comprises ‘a set of phenomena that
are in its domain, the causal laws and other explanatory
mechanisms in terms of which the phenomena are
accounted for, and the concepts in terms of which the
phenomena and explanatory apparatus are expressed’
([33], p. 394). The hierarchical Bayesian framework of
Figure 1 gives a unified account of inference at all these
levels, suggesting how causal models can be used to
predict and explain observable events, how domain-
specific principles guide construction of these models,
and how that abstract domain knowledge could itself
be learned.

At the lowest level of the hierarchy are inferences about
variables characterizing observable events. For instance,
a doctor might observe certain aspects of a patient’s state,
such as symptoms and risk factors, and want to predict
others, such as diseases or future symptoms. These
tasks have often been viewed as bottom-up statistical
inferences [52,1], but there is evidence to suggest that
these predictions are often driven by causal knowledge
[53–55]. Recent work has tried to explain the relevant
knowledge and inferences in rational terms using the
formalism of causal graphical models [56,57]. These
models constitute a particular kind of structured
probabilistic model at the middle level of Figure 1. For
example, Figure 5a shows a causal model that could be
used to make inferences about the diseases of patients
based on their symptoms and risk factors.
Theory-based induction of causal structure

Many recent studies have examined how people learn
these causal models. Again there have been both bottom-
up and top-down proposals. Bottom-up approaches detect
statistical cues to causal structure, such as contingency
between variables [9], normalized probabilistic contrast
[10], or partial correlations [11]. These cues, when they
can be detected reliably, allow causal structure to be
learned for any kinds of variables, without substantive
prior knowledge. However, both adults and young children
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Figure 5. Theory-based Bayesian causal induction. Abstract causal principles constrain the causal structures that may be learned to capture dependencies among observable

variables. (a) Abstract knowledge in a simple medical domain can be represented using a ‘graph schema’, a probabilistic generative grammar for graphs. Variables fall into

three classes – risk factors, diseases, and symptoms – with causal influences only from risks to diseases and diseases to symptoms. Given a newly observed correlation (e.g.

between working in a factory and chronic chest pain), the graph schema generates a constrained set of hypotheses for how that data might be explained (shown in red). In the

simplest hypotheses, a disease known to be caused by working in a factory might cause chest pain, or a disease known to cause chest pain might actually be produced by

working in a factory. Failing these possibilities, the learner could posit a new disease X, which has chest pain as a symptom and is caused by working in a factory. Other

hypotheses that may be simpler a priori but which violate the theory would never be considered, such as a direct causal link from working in a factory to chest pain, or from

chest pain to working in a factory. (b) The abstract knowledge that supports causal learning in a simple physical system, the ‘blicket detector’ [11,63], can be formalized using

probabilistic predicate logic [64,62]. The theory includes several principles: there is some probability r that any object has the power to activate the machine; an efficacious

object will activate the machine upon contact with probability near 1; activation has no other causes. Possible causal relations, given a sequence of interactions between

blocks and the machine, are shown in red. In a context in which most objects have failed to activate the machine (r is small), both people and the theory-based Bayesian

model infer that object A probably activates the machine, whereas B and C probably do not [63,64]. (c) The infinite relational model [26] supports a hierarchical Bayesian

approach to learning simple forms of abstract causal theories. Graph schemas with different numbers of classes and appropriately defined causal laws can be inferred to

explain different kinds of causal network structures that a learner might encounter.
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frequently make correct inferences about causal structure
from just a handful of observations, far too few to compute
contingency or correlation reliably. These inferences must
be supported by more abstract prior knowledge, such as
knowledge about the kinds of causal mechanisms or
structures in a domain, which has been the focus of
most top-down approaches to causal learning [58–60]. The
theory-based Bayesian framework once again provides the
means to integrate bottom-up and top-down influences.
www.sciencedirect.com
In terms of Figure 1, P(DatajStructure) measures the
likelihood for a particular causal model – how well that
causal structure explains the observed pattern of events.
P(StructurejPrinciples) measures the causal model’s prior
probability – how well it fits with the learner’s abstract
domain knowledge. The best causal model maximizes the
product of these two probabilities.

If a causal model represents the most basic kind of
causal theory [51,54], the abstract domain knowledge that
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Box 1. Questions for future research

† How might theory-based Bayesian models apply to other aspects

of cognition where structured knowledge and inductive inference

appear to interact, such as intuitive physics, intuitive psychology, or

moral judgment?

† Can Bayesian models of concept learning and word learning be

integrated with Bayesian models of syntactic acquisition [42] to give

a unified approach to language development?

† How do Bayesian models of inductive inference relate to

probabilistic models of (apparently) deductive thinking, such as

hypothesis testing or syllogistic reasoning [2]?

† Could a hierarchical Bayesian approach provide insight into other

functions of intuitive theories besides induction, such as analogy or

explanation?

† Like other theoretical paradigms, the Bayesian approach is not

meant to be falsifiable in the same sense that a specific compu-

tational model should be; it should be judged in terms of whether it

leads to specific models with explanatory value across a range of

different data sets. What aspects of intuitive theories and theory-

based inference will prove difficult to explain from a Bayesian view?

† How could Bayesian approaches to induction – considered here

strictly at the level of computational theory [3] – be implemented

with tractable algorithms? How can they can be reconciled with

psychological processes that have sometimes looked dramatically

inconsistent with Bayesian principles [69]?

† Philosophers of science and developmental psychologists have

often exchanged ideas about the structure, function, and origins of

theories. Can we build hierarchical Bayesian models of scientific

theories analogous to our models of intuitive theories?
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allows these models to be learned can be thought of as a
higher-level theory – a ‘theory for theories’. Cognitive
developmentalists [19] have often emphasized the import-
ance of larger-scale ‘framework’ theories, which constrain
the specific theories a learner considers, but they have not
been treated computationally. The concept of probabilistic
models for structured representations is well-developed
in computational linguistics [42], where abstract syntactic
principles may be formalized in terms of probabilistic
grammars that generate admissible syntactic structures
in a language with varying probabilities. Several
proposals for formalizing abstract causal theories have
been inspired by this linguistic analogy [61]. These ‘causal
grammars’ [62] share the idea of generating causal
graphical models based on an ontology, which identifies
the types of entities in a domain and the predicates that
can apply to them, and a set of causal laws, which specify
the form of allowed causal relationships between
predicates. Loosely speaking, the ontology generates
the variables that appear in causal graphical models,
and the causal laws generate the edges and associated
conditional probabilities.

Figure 5 sketches two examples of this approach to
theory-based causal induction [61,62]. First, consider
learning a causal network relating risk factors, diseases,
and symptoms, given data on patients’ states. The task is
greatly simplified by an ontology that divides the variables
into three classes – diseases, symptoms, and risk factors –
and causal laws defined over that ontology, specifying that
direct influences only exist between risk factors and
diseases, and between diseases and symptoms. These
principles can be formalized using a kind of probabilistic
graph grammar that [62] call a ‘graph schema’. The
grammar places strong constraints on the causal
structures a learner must consider, and thus allows strong
inferences about causal structure to be drawn from sparse
data (Figure 5a).

Second, consider recent studies exploring theory-based
causal learning using simple physical systems such as the
‘blicket detector’ [11,63,64]. Learners are shown a number
of objects, along with a machine that ‘activates’ (lights up
andmakes noise) whenever certain blocks are placed on it.
After observing several trials in which various
combinations of objects are placed on the machine,
participants are asked which objects have the hidden
causal power to activate the machine. Figure 5b shows
how these judgments can be modeled as theory-based
Bayesian inferences guided by several domain principles,
such as the ‘activation law’: the machine activates if and
only if it is in contact with an object that has the hidden
causal power. This theory can be cast more formally in
probabilistic predicate logic [62]. Unlike bottom-up
approaches to causal learning, this account naturally
explains many findings where adults and young children
make correct inferences from just a few trials, even for
objects that have never appeared on the machine alone
[63,64]. This general framework for theory-based causal
induction has been used to model how people learn more
complex physical systems with hidden variables and
dynamic causes [65], and how people choose optimal
experiments to perform in causal learning [66].
www.sciencedirect.com
Learning abstract causal theories

The question of how abstract causal principles, or ‘frame-
work theories’, might themselves be learned is a major
open question in both artificial intelligence and cognitive
development. For some simple kinds of framework know-
ledge, such as the probabilistic graph grammars discussed
above, it is possible to formulate the learning problem as a
Bayesian inference that can be approximated with
tractable search algorithms. The infinite relational
model (IRM) [26] assumes that variables come in one or
more classes, with relations between them depending on
these classes. Themodel can be used to infer the number of
classes, which variables are in which classes, and what
kinds of relationships hold between classes, directly from
data (Figure 5c). This approach is capable of learning the
abstract principles of the disease theory shown in
Figure 5a, but not the richer theories based on probabi-
listic predicate logic needed to explain inferences in some
other systems such as the blicket detector (Figure 5b).
Several methods for learning in probabilistic logical
systems have recently been introduced in artificial
intelligence [67,68], however, and these methods could
provide the basis for more powerful models of human
theory acquisition.
Conclusion

The theory-based Bayesian framework provides a formal
means to address several fundamental questions about
human cognition. What is the content and form of human
knowledge, at multiple levels of abstraction? How can
abstract domain knowledge guide learning of new
concepts? How can abstract domain knowledge be
learned? What conceptual resources must be built in
innately? How do mechanisms of statistical learning and
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inference interact with – and operate over – structured
symbolic knowledge? Traditionally, computational
accounts that aim to explain a broad spectrum of human
cognition have focused exclusively on either sophisticated
inference processes or sophisticated knowledge represen-
tations. Our view embraces both, and highlights
their interactions.

It is far too soon to say what a mature computational
theory of inductive learning and reasoning will look like.
The real-world problems that children and adults face are
still well beyond the scope of our models, and issues of
algorithmic and psychological plausibility will have to be
addressed (see Box 1, and Editorial ‘Where next?’ in this
issue). Yet as future work on induction unfolds, one idea
should play a crucial role in any explanatory account:
probabilistic inference over hierarchies of increasingly
abstract, flexibly structured representations of the world.
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